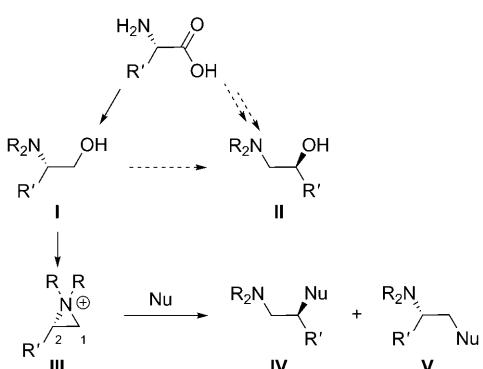


Highly Enantioselective Synthesis of Linear β -Amino Alcohols

Thomas-Xavier Métro, Domingo Gomez Pardo,* and Janine Cossy*^[a]



Abstract: β -Amino alcohols derived from α -amino acids have been extensively used as a powerful source of chirality. Transforming the alcohol moiety into a good leaving group has allowed the rearrangement of these β -amino alcohols and the introduction of a large number of nucleophiles through the anchimeric participation of the nitrogen atom. An overview on the recent progress realized on the rearrangement of these β -amino alcohols in the presence of $(CF_3CO)_2O$ and H_2SO_4 is reported.

Keywords: amino alcohols • aziridinium • rearrangement • sulfuric acid • trifluoroacetic anhydride

Introduction

β -Amino alcohols are present in a great variety of natural products and/or biologically active compounds.^[1] Those derived from α -amino acids have been widely used in asymmetric synthesis, both as chiral auxiliaries and ligands.^[2] Even though β -amino alcohols of type **I** can be easily obtained by reduction and *N,N*-alkylation of naturally occurring α -amino acids, β -amino alcohols of type **II** cannot be issued from α -amino acids in a straightforward manner (Scheme 1). However, it has been demonstrated in early work that transforming the alcohol moiety of β -amino alcohols of type **I** into a good leaving group led to the formation

Scheme 1. Rearrangement of β -amino alcohols of type **I** via an aziridinium intermediate.

of an aziridinium intermediate of type **III**, which can be attacked by a nucleophile to produce the rearranged β -amino alcohol of type **IV**.^[3] Consequently, one could perceive that β -amino alcohols of type **II** could be obtained by the rearrangement of β -amino alcohols of type **I** through the nucleophilic attack of an oxygenated nucleophile on aziridinium intermediate **III** (Scheme 1).

As aziridinium intermediates of type **III** possesses two electrophilic positions, a nucleophilic attack on positions C1 and C2 would lead to the formation of both products **IV** and **V**. The proportions of compounds **IV** and **V** depends on the nucleophile, the R' substituent, and, to a lesser extent, on the solvent and temperature. When oxygenated nucleophiles such as alcohols or phenols are used, a mixture of both compounds **IV** and **V** have always been observed.^[4]

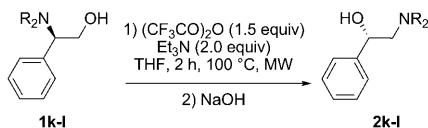
Enantioselective Rearrangement of β -Amino Alcohols of Type **I** to β -Amino Alcohols of Type **II**

The regioselectivity of the rearrangement induced by nucleophilic attack on the aziridinium has been solved by using $(CF_3CO)_2O$ as the activating reagent. Thus, treating β -amino alcohols **I** with $(CF_3CO)_2O$ and Et_3N in THF followed by the addition of NaOH produced β -amino alcohols of type **II** in a regio-, stereo-, and enantioselective one-pot process.^[5] When *N,N*-dibenzylamino alcohols **1a–j** were treated with $(CF_3CO)_2O$ (1.5 equiv) and Et_3N (2.0 equiv) and heated at 100°C for a period of 2 h under microwave irradiation,^[6] followed by the addition of NaOH (3.75 N), the corresponding *N,N*-dibenzylamino alcohols **2a–j** were isolated in good yields and *ee*'s (Table 1). It is worth noting that the rearrangement of amino-1,3-diol **1h** furnished amino-1,2-diol **2h** in 66% yield indicating that the process is very regio- and diastereoselective. Even for β -amino alcohols of type **I** possessing a quaternary center, the rearrangement was highly stereoselective as **2j** was isolated in 63% yield and 88% enantiomeric excess (*ee*) from **1j** (91% *ee*) with almost no loss of chirality.

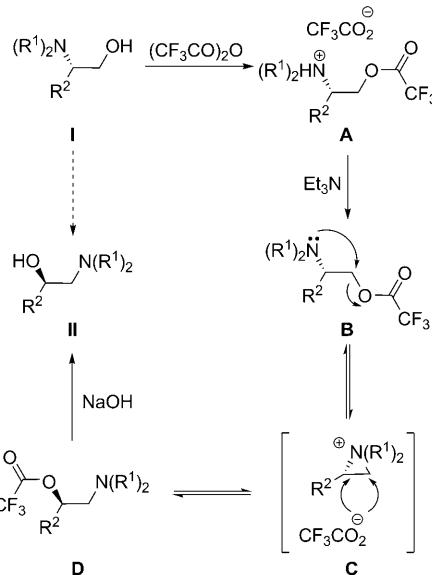
N-Alkyl groups have almost no influence on the rearrangement, as *N,N*-diallylamino alcohol **1k** and *N,N*-dimethylamino alcohol **1l** were rearranged to β -amino alcohols **2k** and **2l** in 85% and 72% yield, and in 99% and 95% *ee*, respectively (Table 2).

The stereospecificity of this rearrangement can be explained by the formation of aziridinium intermediate **C**, which would result from an intramolecular nucleophilic attack (S_Ni) of the lone pair of the nitrogen of amino ester **B** on the carbon atom bearing the trifluoroacetate group (Scheme 2). The latter would be issued from the Et_3N deprotonation of ammonium trifluoroacetate ester **A** obtained by treatment of β -amino alcohol **I** with $(CF_3CO)_2O$. A trifluoroacetate anion could then attack the more substituted carbon atom of the aziridinium **C** to produce the rearranged β -aminoester **D**. As the formation of the aziridinium inter-

[a] Dr. T.-X. M^{etro}, Dr. D. Gomez Pardo, Prof. J. Cossy
Laboratoire de Chimie Organique
Ecole Sup^{érieure} de Physique et de Chimie Industrielles
de la ville de Paris (ESPCI ParisTech), CNRS, 10
rue Vauquelin, 75231 Paris Cedex 05 (France)
Fax: (+33) 140-794-660
E-mail: domingo.gomez-pardo@espci.fr
janine.cossy@espci.fr

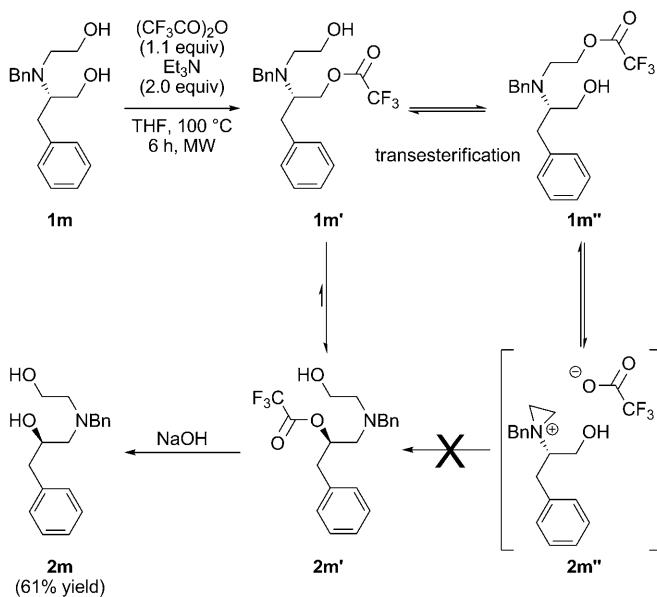

Table 1. Rearrangement of β -amino alcohols of type **I** in the presence of a stoichiometric amount of $(CF_3CO)_2O$ and Et_3N .

Entry	Substrates	Products	Yield [%]	ee [%]		
					1) $(CF_3CO)_2O$ (1.5 equiv) Et_3N (2.0 equiv) THF, 100 °C, 2 h, MW	2) NaOH (8 equiv), RT
1	1a-j	2a-j	99 ^[a]	99		
2	1b	2b	88	99		
3	1c	2c	82	—		
4	1d	2d	99	99		
5	1e	2e	97	99		
6	1f	2f	76	99		
7	1g	2g	93	99		
8	1h	2h	66 ^[b]	99		
9	1i	2i	97 ^[c]	—		
10	1j (91% ee)	2j	63 ^[d]	88		


[a] $CF_3(CO)_2O$ (3.0 equiv), Et_3N (4.0 equiv), reflux, 37 h. [b] $CF_3(CO)_2O$ (1.1 equiv), Et_3N (2.0 equiv). [c] $CF_3(CO)_2O$ (3.0 equiv), Et_3N (4.0 equiv). [d] $CF_3(CO)_2O$ (2.0 equiv), Et_3N (3.0 equiv), RT, 48 h.

mediate **C** and the nucleophilic attack of the trifluoroacetate anion are reversible processes, both intermediates **B** and **D** are in equilibrium, and the secondary trifluoroacetate ester **D** is the thermodynamic product. Saponification of this ester completes the reaction, thus generating β -amino alcohol **II** (Scheme 2). As the rearranged β -amino alcohols were obtained with high ee's, the formation of a planar carbocation intermediate has been excluded.

Table 2. Influence of the *N*-alkyl group on the rearrangement.



Entry	R	Yield [%]	ee [%] (configuration)
1	Allyl (2k)	85	99 (S)
2	Me (2l)	72	95 (S)

Scheme 2. Mechanism of the rearrangement of β -amino alcohols of type **I** in the presence of stoichiometric amounts of $(CF_3CO)_2O$ and Et_3N .

To further understand the influence of *N*-alkyl groups on the rearrangement, β -amino alcohol **1m**, possessing a 2-hydroxyethyl group fixed on the nitrogen atom, was treated with $(CF_3CO)_2O$ (1.1 equiv) and Et_3N (2.0 equiv) in THF at 100 °C for 6 h under microwave irradiation. After addition of NaOH, the rearranged β -amino alcohol **2m** was obtained in 61% yield (Scheme 3). Although this result showed the feasibility of the rearrangement of *N*-2-hydroxyethyl β -amino alcohols, the possible mechanism of this particular case was intriguing. If the previously postulated mechanism intervened in the rearrangement, a mixture of the trifluoroacetates **1m'** and **1m''** should be formed as the two primary hydroxy groups should be esterified with similar rates (Scheme 3). Upon heating, trifluoroacetate **1m'** would rearrange into trifluoroacetate **2m'**, whereas trifluoroacetate **1m''** would form the aziridinium **2m''**. Nucleophilic attack of the aziridinium intermediate **2m''** by a trifluoroacetate anion cannot directly produce the rearranged amino ester **2m'**, but only the amino ester **1m''**, which would release the starting β -amino alcohol **1m** after saponification. As the starting β -amino alcohol **1m** was absent from the crude after saponification, this observation led us to put forward two hypotheses. First, amino esters **1m'** and **1m''** would be in equilibrium due to a transesterification reaction. Second,

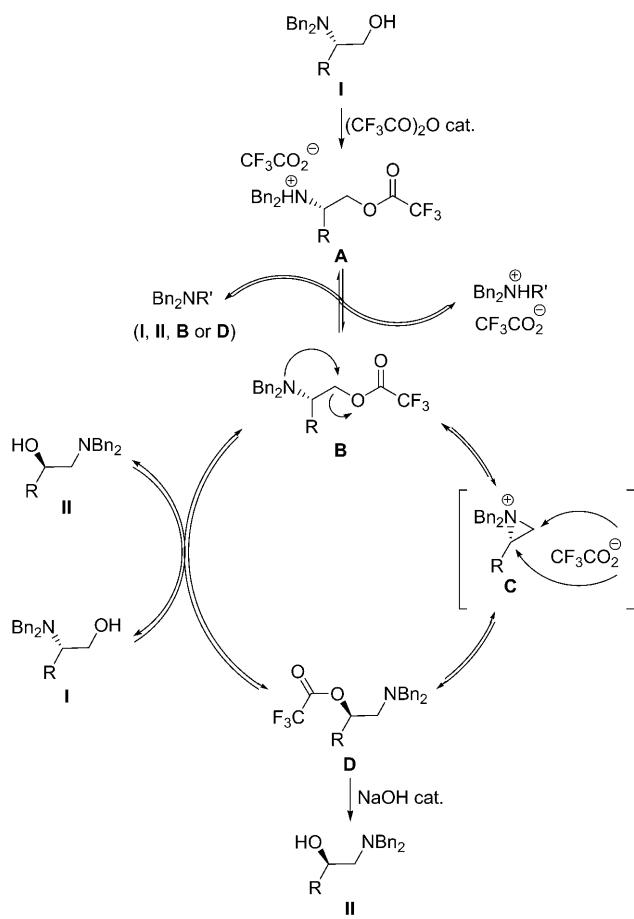
Scheme 3. Hypotheses on the rearrangement of the β -amino alcohols **1m**.

as amino esters **1m'** and **2m'** are also in equilibrium through rearrangement, amino ester **2m'** would be the more stable compound of the overall process and therefore the thermodynamic product.

If one considers that a transesterification could also take place between the rearranged amino ester **2m'** and the starting amino alcohol **1m**, the use of substoichiometric quantities of $(CF_3CO)_2O$ should be sufficient to obtain complete conversion of β -amino alcohol **1m**. Experimental conditions using $(CF_3CO)_2O$ as a catalyst were therefore devised.^[7] Thus, when β -amino alcohol **1a** was treated with $(CF_3CO)_2O$ (0.2 equiv) in THF for 2 h at 180 °C under microwave irradiation, followed by the addition of NaOH (0.3 equiv), β -amino alcohol **2a** was obtained in 98% yield and 99% *ee*. These conditions were then applied to the β -amino alcohols **1a–h** (Table 3). The reaction proved to be general,^[8] as the yields and *ee*'s of the rearranged products were very similar to those obtained when the stoichiometric conditions were used. It is worth noting that under catalytic conditions, no Et_3N is needed, avoiding possible side reactions between Et_3N and $(CF_3CO)_2O$.^[9]

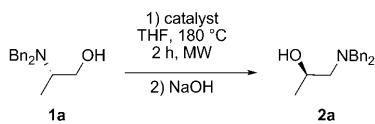
The formation of β -amino alcohols of type **II** from β -amino alcohols of type **I** under catalytic conditions without any Et_3N could be explained by the formation of a catalytic amount of ammonium trifluoroacetate ester **A**, which could be deprotonated by any tertiary amines present in the reaction media (and most probably compounds of type **I**, **II**, **B**, or **D**). An S_N2 intramolecular substitution by the *N,N*-di-alkylamine functionality in **B** could form aziridinium **C**, liberating a trifluoroacetate anion in the reaction media (Scheme 4). This latter anion could attack the more substituted carbon atom of aziridinium **C**, producing amino ester **D** according to a S_N2 substitution. An intermolecular transesterification between β -amino alcohol **I** and amino ester **D**

Table 3. Rearrangement of β -amino alcohols of type **I** in the presence of $(CF_3CO)_2O$ as a catalyst.


Entry	Substrates	Products	Catalytic conditions	Yield [%] (<i>ee</i> [%]) ^[a] [yield [%] (<i>ee</i> [%])] ^[b]	
				1) $(CF_3CO)_2O$ (0.2 equiv) THF, Δ	2) NaOH (0.3 equiv)
1	1a	2a	180 °C, 2 h	98 (99) [99 ^[c] (99)]	
2	1b	2b	180 °C, 2 h	93 (99) [88 (99)]	
3	1c	2c	180 °C, 2 h	89 (–) [82 (–)]	
4	1d	2d	100 °C, 18 h	74 (99) [99 (99)]	
5	1e	2e	180 °C, 2 h	87 (99) [97 (99)]	
6	1f	2f	180 °C, 2 h	96 (99) [76 (99)]	
7	1g	2g	100 °C, 18 h	78 (99) [93 (99)]	
8	1h	2h	100 °C, 18 h	83 (99) [66 ^[d] (99)]	

[a] Catalytic conditions. [b] Stoichiometric conditions. [c] $(CF_3CO)_2O$ (3.0 equiv), Et_3N (4.0 equiv), reflux, 37 h. [d] $(CF_3CO)_2O$ (1.1 equiv), Et_3N (2.0 equiv).

could take place to form β -amino alcohol **II** and amino ester **B**, which could in turn be transformed into aziridinium **C** again. As species **I**, **II**, **B**, and **D** are in equilibrium, both the rearranged β -amino alcohol **II** and amino ester **D** are thermodynamic products. The use of NaOH (0.3 equiv) in the second step allows the saponification of the resulting catalytic amount of amino ester **D** releasing the rearranged β -amino alcohol **II** (Scheme 4).


To understand the influence of the trifluoroacetate anion in the rearrangement, β -amino alcohol **1a** was treated with a catalytic amount of trifluoroacetic acid (Table 4, entry 2). After addition of NaOH, β -amino alcohol **2a** was surprisingly produced in 62% yield. The rearrangement of β -amino alcohol **1a** was then investigated with other acids, such as AcOH, HCl, *p*-toluenesulfonic acid (PTSA), and H_2SO_4 . Among these acids tested, the best yield for the rearranged product **2a** was obtained using a catalytic amount of H_2SO_4 (Table 4, entry 6). Whereas 20 mol % of $(CF_3CO)_2O$ was necessary to reach complete conversion of β -amino alcohol **1a**, not more than 5 mol % of H_2SO_4 was enough to obtain the same result.

When **1a** was heated at 180 °C for 2 h under microwave irradiation in the presence of H_2SO_4 (5 mol %), **2a** was obtained in excellent yield (97%) and *ee* (99%) (Table 5, entry 1). Due to this result, these latter conditions were applied to β -amino alcohols **1a–h** and **1n** (Table 5).^[10] For β -amino alcohols **1a–h**, the *ee*'s of the rearranged products were excellent and the yields were in between 65–97%, except for **1h** which was rearranged in 39% yield. Although

Scheme 4. Mechanism of the rearrangement of β -amino alcohols of type **I** in the presence of $(CF_3CO)_2O$ as a catalyst.

Table 4. Influence of the catalyst on the rearrangement of β -amino alcohol **1a**.

[a] Determined by 1H NMR of the crude material.

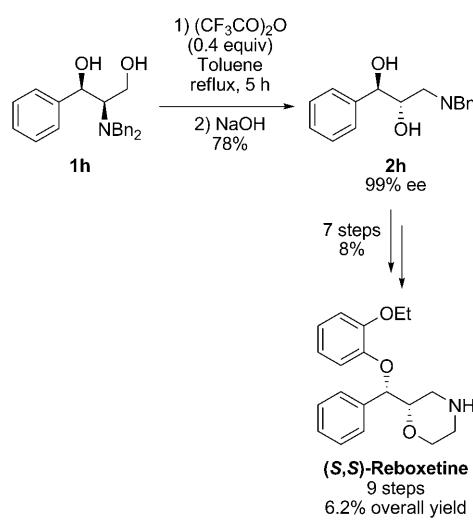

the yield and *ee* were lower than for the corresponding *N,N*-dibenzyl- β -amino alcohol **1g** (65%, 95% *ee*), the rearrangement of compound **1n** (22% yield, 83% *ee*) has shown that the rearrangement of secondary *N*-benzyl- β -amino alcohols was possible.

By using H_2SO_4 , β -amino alcohols of type **I** could be transformed into ammonium sulfate **E** (Scheme 5), which could be deprotonated by any tertiary amine present in the

Table 5. Rearrangement of β -amino alcohols of type **I** in the presence of H_2SO_4 as the catalyst.

Entry	Substrates	Products	Yield [%]	<i>ee</i> [%]
1	1a	2a	97	99
2	1b	2b	95	99
3	1c	2c	96	—
4	1d	2d	81	99
5	1e	2e	94	99
6	1f	2f	88	99
7	1g	2g	65	95
8	1h	2h	39 ^[a]	99
9	1n	2n	22 ^[b]	83

[a] H_2SO_4 (15 mol %), THF, 180 °C, 2 h, microwave irradiation. [b] H_2SO_4 (30 mol %), THF, 180 °C, 6 h, microwave irradiation.



Scheme 5. Mechanism of the rearrangement of β -amino alcohols of type **I** in the presence of H_2SO_4 as the catalyst.

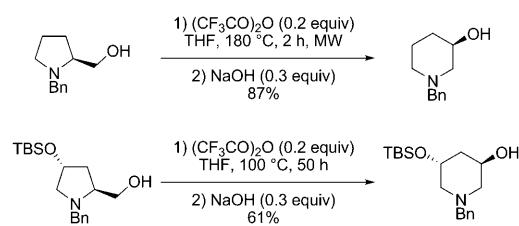
reaction media (and most probably compounds of type **I**, **II**, **F** or **H**). Both an intramolecular nucleophilic substitution (S_Ni) of the sulfate group by the amine functionality, and a nucleophilic attack of the sulfate group on the carbon bearing the nitrogen atom would release the rearranged amino sulfate **H**. A sulfate exchange between β -amino alcohol **I** and the rearranged amino sulfate **H** would produce the rearranged β -amino alcohol **II** and amino sulfate **F** (Scheme 5). This last sulfate would be transformed into the rearranged amino sulfate **H** until complete conversion of both β -amino alcohol **I** and amino sulfate **F**. As external nucleophiles, such as alcohols, thiols, or amines, cannot be introduced

during the process, the probability for the formation of aziridinium intermediate **G** is very low. This result seems in favor of a concerted transformation of amino sulfate **F** to amino sulfate **H**, as already described by Anker et al.^[11] Besides, the formation of sulfate intermediate **E** was supported by the ability of $\text{Py}\text{-SO}_3$ to catalyze the rearrangement, as **1a** was transformed to **2a** in 97% yield by using 5 mol % of $\text{Py}\text{-SO}_3$.^[10] The high *ee*'s obtained for the rearranged *N,N*-dibenzyl-β-amino alcohols allow us to exclude the formation of a planar carbocation intermediate.

The rearrangement of β-amino alcohol **1h** to **2h** under catalytic conditions has been applied to the synthesis of (*S,S*)-reboxetine, a selective norepinephrine reuptake inhibitor, for which an equimolar mixture of (*S,S*)- and (*R,R*)-enantiomer is actually sold as an antidepressant.^[12] We have to point out that in this case, the rearrangement was achieved on a gram scale in refluxing toluene without any microwave apparatus, showing that this rearrangement could be realized at the industrial scale. β-Amino diol **2h** was then transformed into (*S,S*)-reboxetine in seven steps (Scheme 6).^[13] By using this strategy, (*S,S*)-reboxetine was synthesized in nine steps with 6.2% overall yield.

Scheme 6. Application of the rearrangement of β-amino alcohols to the synthesis of (*S,S*)-reboxetine.

Conclusion


During our studies, the conditions allowing the rearrangement of β-amino alcohols of type **I** have been greatly improved: from stoichiometric to catalytic quantities of the major reagent $[(\text{CF}_3\text{CO})_2\text{O}]$, then from expensive $(\text{CF}_3\text{CO})_2\text{O}$ to cheap and widely available H_2SO_4 , which also allowed a reduction in the catalyst loading. Whatever the conditions used, the rearranged β-amino alcohols of type **II** were obtained in very good yields and *ee*'s. The present new conditions [catalytic quantities of $(\text{CF}_3\text{CO})_2\text{O}$ or H_2SO_4] offer opportunities to explore the reactivity of a great variety of β-amino alcohols and to transform them

into β-amino alcohols that contain biologically active compounds.

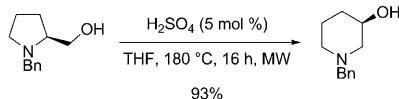
Acknowledgements

Sanofi Aventis is greatly acknowledged for financial support (grant to T.-X.M.).

- [1] S. C. Bergmeier, *Tetrahedron* **2000**, *56*, 2561–2576 and references therein.
- [2] D. J. Ager, I. Prakash, D. R. Schaad, *Chem. Rev.* **1996**, *96*, 835–875.
- [3] For representative examples, see : a) M. J. Frizzle, S. Caille, T. L. Marshall, K. McRae, K. Nadeau, G. Guo, S. Wu, M. J. Martinelli, G. A. Moniz, *Org. Process Res. Dev.* **2007**, *11*, 215–222; b) C. Couturier, J. Blanchet, T. Schlama, J. Zhu, *Org. Lett.* **2006**, *8*, 2183–2186; c) D. Gala, V. H. Dahanukar, J. M. Eckert, B. S. Lucas, D. P. Schumacher, I. A. Zavialov, P. Buholzer, P. Kubisch, I. Mergelsberg, D. Scherer, *Org. Process Res. Dev.* **2004**, *8*, 754–768; d) P. O'Brien, T. D. Towers, *J. Org. Chem.* **2002**, *67*, 304–307; e) K. Weber, S. Kuklinski, P. Gmeiner, *Org. Lett.* **2000**, *2*, 647–649; f) S. R. Anderson, J. T. Ayers, K. M. DeVries, F. Ito, D. Mendenhall, B. C. Vanderplas, *Tetrahedron: Asymmetry* **1999**, *10*, 2655–2663; g) P. Gmeiner, D. Junge, A. Kaerntner, *J. Org. Chem.* **1994**, *59*, 6766–6776; h) R. K. Dieter, N. Deo, B. Lagu, J. W. Dieter, *J. Org. Chem.* **1992**, *57*, 1663–1671.
- [4] a) F. L. Bach, E. Cohen, *J. Chem. Soc. D* **1968**, 415–416; b) A. Steiger, H. J. Pyun, R. M. Coates, *J. Org. Chem.* **1992**, *57*, 3444–3449; c) M. Okuda, K. Tomioka, *Tetrahedron Lett.* **1994**, *35*, 4585–4586; d) M. A. Poelert, L. A. Hulshof, R. M. Kellogg, *Recl. Trav. Chim. Pays-Bas* **1994**, *113*, 355–364.
- [5] T.-X. Métro, J. Appenzeller, D. Gomez Pardo, J. Cossy, *Org. Lett.* **2006**, *8*, 3509–3512.
- [6] Reactions achieved under microwave irradiation were realized in sealed tubes. The microwave apparatus is not mandatory for reactions involving $(\text{CF}_3\text{CO})_2\text{O}$ in THF at 100°C, as similar results were obtained using a sealed tube heated in an oil bath at the same temperature.
- [7] T.-X. Métro, D. Gomez Pardo, J. Cossy, *J. Org. Chem.* **2007**, *72*, 6556–6561.
- [8] The experimental conditions with catalytic amount of $(\text{CF}_3\text{CO})_2\text{O}$

have also been applied to the following cyclic β-amino alcohols: For stereospecific ring expansion of cyclic β-amino alcohols using stoichiometric conditions, see: a) J. Cossy, C. Dumas, P. Michel, D. Gomez Pardo, *Tetrahedron Lett.* **1995**, *36*, 549–552; b) J. Cossy, C. Dumas, D. Gomez Pardo, *Synlett* **1997**, 905–906; c) J. Cossy, C. Dumas, D. Gomez Pardo, *Bioorg. Med. Chem. Lett.* **1997**, *7*, 1343–1344; d) J. Wilken, M. Kossenjans, W. Saak, D. Haase, S. Pohl, J. Martens, *Liebigs Ann./Recl.* **1997**, 573–579; e) N. Langlois, O. Calvez, *Synth. Commun.* **1998**, *28*, 4471–4477; f) P. W. Davis, S. A. Osgood, N. Hébert, K. G. Sprankle, E. E. Swayze, *Biotechnol. Bioeng.* **1999**, *61*, 143–154; g) J. Cossy, C. Dumas, D. Gomez Pardo, *Eur. J. Org. Chem.* **1999**, 1693–1699; h) P. Michel, A. Rassat, *J. Org. Chem.* **2000**, *65*, 2572–2573; i) J. Cossy, O. Mirquet, D. Gomez

Pardo, *Synlett* **2001**, 1575–1577; j) A. Brandi, S. Cicchi, V. Paschetta, D. Gomez Pardo, J. Cossy, *Tetrahedron Lett.* **2002**, *43*, 9357–9359; k) A. Deyine, J.-M. Delcroix, N. Langlois, *Heterocycles* **2004**, *64*, 207–214; l) I. Déchamps, D. Gomez Pardo, P. Karoyan, J. Cossy, *Synlett* **2005**, 1170–1172; m) R. Roudeau, D. Gomez Pardo, J. Cossy, *Tetrahedron* **2006**, *62*, 2388–2394; n) M. Mena, J. Bonjoch, D. Gomez Pardo, J. Cossy, *J. Org. Chem.* **2006**, *71*, 5930–5935; o) I. Déchamps, D. Gomez Pardo, J. Cossy, *Tetrahedron* **2007**, *63*, 9082–9091.


[9] S. L. Schreiber, *Tetrahedron Lett.* **1980**, *21*, 1027–1030.

[10] T.-X. Métro, D. Gomez Pardo, J. Cossy, *Synlett* **2007**, 2888–2890; these conditions were also applied to the following cyclic β -amino alcohol:

[11] D. Picq, M. Cottin, D. Anker, H. Pacheco, *Tetrahedron* **1983**, *39*, 1797–1801.

[12] a) P. Melloni, G. Carniel, A. Della Torre, A. Bonsignori, A. Buonamici, O. Pozzi, S. Ricciardi, A. C. Rossi, *Eur. J. Med. Chem.* **1984**, *19*, 235–242; b) M. Hajós, J. C. Fleishaker, J. K. Filipiak-Reisner, M. T. Brown, E. H. F. Wong, *CNS Drug Rev.* **2004**, *10*, 23–44.

[13] a) T.-X. Métro, D. Gomez Pardo, J. Cossy, *J. Org. Chem.* **2008**, *73*, 707–710; b) T.-X. Métro, D. Gomez Pardo, J. Cossy, *Synfacts* **2008**, *6*, 559.

Published online: December 10, 2008